@triton.jit
def kernel_unified_attention_3d(
        segm_output_ptr,
        # [num_tokens, num_query_heads, num_segments, head_size]
        segm_max_ptr,  # [num_tokens, num_query_heads, num_segments]
        segm_expsum_ptr,  # [num_tokens, num_query_heads, num_segments]
        query_ptr,  # [num_tokens, num_query_heads, head_size]
        key_cache_ptr,  # [num_blks, num_kv_heads, head_size // x, blk_size, x]
        value_cache_ptr,  # [num_blks, num_kv_heads, head_size, blk_size]
        sink_ptr,  # [num_query_heads]
        block_tables_ptr,  # [num_seqs, max_num_blocks_per_seq]
        seq_lens_ptr,  # [num_seqs]
        alibi_slopes_ptr,  # [num_query_heads]
        qq_bias_ptr,  # [num_query_tokens, num_query_tokens]
        scale,  # float32
        k_scale,  # float32
        v_scale,  # float32
        softcap,  # float32
        num_query_heads: tl.constexpr,  # int
        num_queries_per_kv: tl.constexpr,  # int
        block_table_stride: tl.int64,  # int
        query_stride_0: tl.int64,  # int
        query_stride_1: tl.int64,  # int, should be equal to head_size
        qq_bias_stride_0: tl.int64,  # int
        BLOCK_SIZE: tl.constexpr,  # int
        HEAD_SIZE: tl.constexpr,  # int
        HEAD_SIZE_PADDED: tl.constexpr,  # int, must be power of 2
        USE_ALIBI_SLOPES: tl.constexpr,  # bool
        USE_QQ_BIAS: tl.constexpr,  # bool
        USE_SOFTCAP: tl.constexpr,  # bool
        USE_SINKS: tl.constexpr,  # bool
        SLIDING_WINDOW: tl.constexpr,  # int
        stride_k_cache_0: tl.int64,  # int
        stride_k_cache_1: tl.int64,  # int
        stride_k_cache_2: tl.int64,  # int
        stride_k_cache_3: tl.constexpr,  # int
        stride_v_cache_0: tl.int64,  # int
        stride_v_cache_1: tl.int64,  # int
        stride_v_cache_2: tl.int64,  # int
        stride_v_cache_3: tl.constexpr,  # int
        query_start_len_ptr,  # [num_seqs+1]
        BLOCK_Q: tl.constexpr,  # int
        num_seqs: tl.int32,
        BLOCK_M: tl.constexpr,  # int
        NUM_SEGMENTS_PER_SEQ: tl.constexpr,  # int
):
    q_block_global_idx = tl.program_id(0)
    kv_head_idx = tl.program_id(1)
    segm_idx = tl.program_id(2)
    seq_idx = find_seq_idx(query_start_len_ptr, q_block_global_idx, num_seqs,
                           BLOCK_Q, True)
    q_block_start_idx = tl.load(query_start_len_ptr +
                                seq_idx) // BLOCK_Q + seq_idx
    q_block_local_idx = q_block_global_idx - q_block_start_idx
    cur_batch_in_all_start_index = tl.load(query_start_len_ptr + seq_idx)
    cur_batch_in_all_stop_index = tl.load(query_start_len_ptr + seq_idx + 1)
    cur_batch_query_len = cur_batch_in_all_stop_index \
        - cur_batch_in_all_start_index
    if q_block_local_idx * BLOCK_Q >= cur_batch_query_len:
        return
    # sequence len for this particular sequence
    seq_len = tl.load(seq_lens_ptr + seq_idx)
    # number of segments for this particular sequence
    num_segments = NUM_SEGMENTS_PER_SEQ
    blocks_per_segment = cdiv_fn(seq_len, num_segments * BLOCK_SIZE)
    if segm_idx * blocks_per_segment * BLOCK_SIZE >= seq_len:
        return
    offs_m = tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, HEAD_SIZE_PADDED)
    query_pos = q_block_local_idx * BLOCK_Q + offs_m // num_queries_per_kv
    query_offset_0 = cur_batch_in_all_start_index + query_pos
    query_offset_1 = kv_head_idx * num_queries_per_kv + \
        offs_m % num_queries_per_kv
    query_offset = (query_offset_0[:, None] * query_stride_0 +
                    query_offset_1[:, None] * query_stride_1 + offs_d[None, :])
    dim_mask = tl.where(offs_d < HEAD_SIZE, 1, 0).to(tl.int1)
    query_mask_0 = tl.where(query_pos < cur_batch_query_len, 1, 0).to(tl.int1)
    query_mask_1 = tl.where(query_offset_1 < num_query_heads, 1, 0).to(tl.int1)
    # Q : (BLOCK_M, HEAD_SIZE_PADDED)
    Q = tl.load(
        query_ptr + query_offset,
        mask=dim_mask[None, :] & query_mask_0[:, None] & query_mask_1[:, None],
        other=0.0,
    )
    block_table_offset = seq_idx * block_table_stride
    if USE_SINKS:
        if segm_idx == 0:
            M = tl.load(
                sink_ptr + query_offset_1,
                mask=query_mask_1,
                other=float("-inf"),
            ).to(dtype=tl.float32)
        else:
            M = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
    else:
        M = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
    L = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, HEAD_SIZE_PADDED], dtype=tl.float32)
    # context length for this particular sequences
    context_len = seq_len - cur_batch_query_len
    # alibi slope for this head
    if USE_ALIBI_SLOPES:
        alibi_slope = tl.load(alibi_slopes_ptr + query_offset_1,
                              mask=query_mask_1,
                              other=0.0)
    # query-query attention bias
    if USE_QQ_BIAS:
        qq_bias_row_ptrs = (qq_bias_ptr + query_pos[:, None] * qq_bias_stride_0
                            )  # shape: [BLOCK_M]
    num_blocks = cdiv_fn(seq_len, BLOCK_SIZE)
    # iterate through tiles within current segment
    for j in range(
            segm_idx * blocks_per_segment,
            min((segm_idx + 1) * blocks_per_segment, num_blocks),
    ):
        physical_block_idx = tl.load(block_tables_ptr + block_table_offset + j)
        offs_n = tl.arange(0, BLOCK_SIZE)
        v_offset = (physical_block_idx * stride_v_cache_0 +
                    kv_head_idx * stride_v_cache_2 +
                    offs_d[None, :] * stride_v_cache_3 +
                    offs_n[:, None] * stride_v_cache_1)
        k_offset = (physical_block_idx * stride_k_cache_0 +
                    kv_head_idx * stride_k_cache_2 +
                    offs_d[:, None] * stride_k_cache_3 +
                    offs_n[None, :] * stride_k_cache_1)
        # K : (HEAD_SIZE, BLOCK_SIZE)
        K_load = tl.load(key_cache_ptr + k_offset,
                         mask=dim_mask[:, None],
                         other=0.0)
        if K_load.dtype.is_fp8():
            if Q.dtype.is_fp8():
                K = K_load
            else:
                K = (K_load.to(tl.float32) * tl.load(k_scale)).to(Q.dtype)
        else:
            K = K_load
        # V : (BLOCK_SIZE, HEAD_SIZE)
        V_load = tl.load(value_cache_ptr + v_offset,
                         mask=dim_mask[None, :],
                         other=0.0)
        if V_load.dtype.is_fp8():
            if Q.dtype.is_fp8():
                V = V_load
            else:
                V = (V_load.to(tl.float32) * tl.load(v_scale)).to(Q.dtype)
        else:
            V = V_load
        seq_offset = j * BLOCK_SIZE + offs_n
        seq_mask = seq_offset[None, :] < context_len + query_pos[:, None] + 1
        # S : (BLOCK_M, BLOCK_SIZE)
        S = tl.zeros(shape=(BLOCK_M, BLOCK_SIZE), dtype=tl.float32)
        S += scale * tl.dot(Q, K)
        if USE_SOFTCAP:
            S = apply_softcap(S, softcap)
        S = tl.where(query_mask_1[:, None] & query_mask_0[:, None] & seq_mask,
                     S, float("-inf"))
        if SLIDING_WINDOW > 0:
            S = tl.where((context_len + query_pos[:, None] - seq_offset)
                         < SLIDING_WINDOW, S, float("-inf"))
        if USE_ALIBI_SLOPES:
            S += alibi_slope[:, None] * (seq_offset - context_len)
        if USE_QQ_BIAS:
            # compute key positions relative to query section
            key_rel_pos = seq_offset - context_len  # shape: [BLOCK_SIZE]
            # load bias only for keys that correspond to queries
            is_query_key = key_rel_pos >= 0 and key_rel_pos < qq_bias_stride_0
            qq_bias = tl.load(
                qq_bias_row_ptrs + key_rel_pos[None, :],
                mask=is_query_key[None, :],  # avoid OOB for context keys
                other=0.0,
            )
            S += qq_bias
        # compute running maximum
        # m_j : (BLOCK_M,)
        m_j = tl.maximum(M, tl.max(S, axis=1))
        # For sliding window there's a chance the max is -inf due to masking of
        # the entire row. In this case we need to set m_j 0 to avoid NaN
        m_j = tl.where(m_j > float("-inf"), m_j, 0.0)
        # P : (BLOCK_M, BLOCK_SIZE,)
        P = tl.exp(S - m_j[:, None])
        # l_j : (BLOCK_M,)
        l_j = tl.sum(P, axis=1)
        # alpha : (BLOCK_M, )
        alpha = tl.exp(M - m_j)
        # acc : (BLOCK_M, HEAD_SIZE_PADDED)
        acc = acc * alpha[:, None]
        # update constants
        L = L * alpha + l_j
        M = m_j
        # acc : (BLOCK_M, HEAD_SIZE_PADDED)
        acc += tl.dot(P.to(V.dtype), V)
    segm_output_offset = (
        query_offset_0[:, None].to(tl.int64) *
        (num_query_heads * NUM_SEGMENTS_PER_SEQ * HEAD_SIZE_PADDED) +
        query_offset_1[:, None] * (NUM_SEGMENTS_PER_SEQ * HEAD_SIZE_PADDED) +
        segm_idx * HEAD_SIZE_PADDED + tl.arange(0, HEAD_SIZE_PADDED)[None, :])
    tl.store(
        segm_output_ptr + segm_output_offset,
        acc,
        mask=dim_mask[None, :] & query_mask_0[:, None] & query_mask_1[:, None],
    )
    segm_offset = (query_offset_0.to(tl.int64) *
                   (num_query_heads * NUM_SEGMENTS_PER_SEQ) +
                   query_offset_1 * NUM_SEGMENTS_PER_SEQ + segm_idx)
    tl.store(segm_max_ptr + segm_offset, M, mask=query_mask_0 & query_mask_1)
    tl.store(segm_expsum_ptr + segm_offset,
             L,
             mask=query_mask_0 & query_mask_1)