class OpenAIServingResponses(OpenAIServing):
    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
        chat_template: Optional[str],
        chat_template_content_format: ChatTemplateContentFormatOption,
        return_tokens_as_token_ids: bool = False,
        reasoning_parser: str = "",
        enable_auto_tools: bool = False,
        tool_parser: Optional[str] = None,
        tool_server: Optional[ToolServer] = None,
        enable_prompt_tokens_details: bool = False,
        enable_force_include_usage: bool = False,
        enable_log_outputs: bool = False,
    ) -> None:
        super().__init__(
            engine_client=engine_client,
            model_config=model_config,
            models=models,
            request_logger=request_logger,
            return_tokens_as_token_ids=return_tokens_as_token_ids,
            enable_force_include_usage=enable_force_include_usage,
        )
        self.chat_template = chat_template
        self.chat_template_content_format: Final = chat_template_content_format
        self.enable_log_outputs = enable_log_outputs
        self.reasoning_parser: Optional[Callable[[AnyTokenizer],
                                                 ReasoningParser]] = None
        if reasoning_parser:
            try:
                self.reasoning_parser = (
                    ReasoningParserManager.get_reasoning_parser(
                        reasoning_parser))
                assert self.reasoning_parser is not None
            except Exception as e:
                raise TypeError(
                    f"{reasoning_parser=} has not been registered") from e
        self.enable_prompt_tokens_details = enable_prompt_tokens_details
        self.enable_force_include_usage = enable_force_include_usage
        self.default_sampling_params = (
            self.model_config.get_diff_sampling_param())
        if self.default_sampling_params:
            source = self.model_config.generation_config
            source = "model" if source == "auto" else source
            logger.info("Using default chat sampling params from %s: %s",
                        source, self.default_sampling_params)
        # If False (default), the "store" option is (silently) ignored and the
        # response is not stored. If True, the response is stored in memory.
        # NOTE(woosuk): This may not be intuitive for users, as the default
        # behavior in OpenAI's Responses API is to store the response, but
        # vLLM's default behavior is not.
        self.enable_store = envs.VLLM_ENABLE_RESPONSES_API_STORE
        if self.enable_store:
            logger.warning_once(
                "`VLLM_ENABLE_RESPONSES_API_STORE` is enabled. This may "
                "cause a memory leak since we never remove responses from "
                "the store.")
        self.use_harmony = model_config.hf_config.model_type == "gpt_oss"
        if self.use_harmony:
            logger.warning("For gpt-oss, we ignore --enable-auto-tool-choice "
                           "and always enable tool use.")
            # OpenAI models have two EOS-like tokens: <|return|> and <|call|>.
            # We need to add them to the stop token ids.
            if "stop_token_ids" not in self.default_sampling_params:
                self.default_sampling_params["stop_token_ids"] = []
            self.default_sampling_params["stop_token_ids"].extend(
                get_stop_tokens_for_assistant_actions())
        # set up tool use
        self.enable_auto_tools: bool = enable_auto_tools
        if self.enable_auto_tools:
            logger.info(
                "\"auto\" tool choice has been enabled please note that while"
                " the parallel_tool_calls client option is preset for "
                "compatibility reasons, it will be ignored.")
        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove responses from the store.
        self.response_store: dict[str, ResponsesResponse] = {}
        self.response_store_lock = asyncio.Lock()
        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove messages from the store.
        self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}
        self.background_tasks: dict[str, asyncio.Task] = {}
        self.tool_server = tool_server
    async def create_responses(
        self,
        request: ResponsesRequest,
        raw_request: Optional[Request] = None,
    ) -> Union[AsyncGenerator[str, None], ResponsesResponse, ErrorResponse]:
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            logger.error("Error with model %s", error_check_ret)
            return error_check_ret
        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error
        if request.store and not self.enable_store:
            if request.background:
                return self.create_error_response(
                    err_type="invalid_request_error",
                    message=(
                        "This vLLM engine does not support `store=True` and "
                        "therefore does not support the background mode. To "
                        "enable these features, set the environment variable "
                        "`VLLM_ENABLE_RESPONSES_API_STORE=1` when launching "
                        "the vLLM server."),
                    status_code=HTTPStatus.BAD_REQUEST,
                )
            # Disable the store option.
            # NOTE(woosuk): Although returning an error is possible, we opted
            # to implicitly disable store and process the request anyway, as
            # we assume most users do not intend to actually store the response
            # (i.e., their request's `store=True` just because it's the default
            # value).
            request.store = False
        # Handle the previous response ID.
        prev_response_id = request.previous_response_id
        if prev_response_id is not None:
            if not prev_response_id.startswith("resp_"):
                return self._make_invalid_id_error(prev_response_id)
            async with self.response_store_lock:
                prev_response = self.response_store.get(prev_response_id)
            if prev_response is None:
                return self._make_not_found_error(prev_response_id)
        else:
            prev_response = None
        try:
            lora_request = self._maybe_get_adapters(request)
            model_name = self._get_model_name(request.model, lora_request)
            tokenizer = await self.engine_client.get_tokenizer(lora_request)
            if self.use_harmony:
                messages, request_prompts, engine_prompts = (
                    self._make_request_with_harmony(request, prev_response))
            else:
                messages, request_prompts, engine_prompts = (
                    await self._make_request(request, prev_response,
                                             tokenizer))
        except (ValueError, TypeError, RuntimeError, jinja2.TemplateError,
                NotImplementedError) as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(f"{e} {e.__cause__}")
        request_metadata = RequestResponseMetadata(
            request_id=request.request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata
        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[ConversationContext, None]] = []
        builtin_tool_list: list[str] = []
        if self.use_harmony and self.tool_server is not None:
            if self.tool_server.has_tool("browser"):
                builtin_tool_list.append("browser")
            if self.tool_server.has_tool("python"):
                builtin_tool_list.append("python")
        async with AsyncExitStack() as exit_stack:
            try:
                if self.tool_server is not None:
                    # TODO: initialize tool sessions lazily when the session
                    # is actually used.
                    tool_session_ctxs: dict[str, Any] = {
                        tool_name:
                        exit_stack.enter_async_context(
                            self.tool_server.new_session(tool_name))
                        for tool_name in builtin_tool_list
                    }
                    tool_sessions = {}
                    for tool_name in builtin_tool_list:
                        tool_sessions[tool_name] = (
                            await tool_session_ctxs[tool_name])
                else:
                    assert len(builtin_tool_list) == 0
                    tool_sessions = {}
                for i, engine_prompt in enumerate(engine_prompts):
                    default_max_tokens = self.max_model_len - len(
                        engine_prompt["prompt_token_ids"])
                    sampling_params = request.to_sampling_params(
                        default_max_tokens, self.default_sampling_params)
                    trace_headers = (None if raw_request is None else await
                                     self._get_trace_headers(
                                         raw_request.headers))
                    context: ConversationContext
                    if self.use_harmony:
                        if request.stream:
                            context = StreamingHarmonyContext(
                                messages, tool_sessions)
                        else:
                            context = HarmonyContext(messages, tool_sessions)
                    else:
                        context = SimpleContext()
                    generator = self._generate_with_builtin_tools(
                        request_id=request.request_id,
                        request_prompt=request_prompts[i],
                        engine_prompt=engine_prompt,
                        sampling_params=sampling_params,
                        context=context,
                        lora_request=lora_request,
                        priority=request.priority,
                        trace_headers=trace_headers,
                    )
                    generators.append(generator)
            except ValueError as e:
                # TODO: Use a vllm-specific Validation Error
                return self.create_error_response(str(e))
            assert len(generators) == 1
            result_generator, = generators
            # Store the input messages.
            if request.store:
                self.msg_store[request.request_id] = messages
            if request.background:
                created_time = int(time.time())
                response = ResponsesResponse.from_request(
                    request,
                    sampling_params,
                    model_name=model_name,
                    created_time=created_time,
                    output=[],
                    status="queued",
                    usage=None,
                )
                async with self.response_store_lock:
                    self.response_store[response.id] = response
                # Run the request in the background.
                task = asyncio.create_task(
                    self._run_background_request(
                        request,
                        sampling_params,
                        result_generator,
                        context,
                        model_name,
                        tokenizer,
                        request_metadata,
                        created_time,
                    ),
                    name=f"create_{response.id}",
                )
                # For cleanup.
                response_id = response.id
                self.background_tasks[response_id] = task
                task.add_done_callback(
                    lambda _: self.background_tasks.pop(response_id, None))
                return response
            if request.stream:
                raise NotImplementedError(
                    "Streaming responses are not supported")
            try:
                return await self.responses_full_generator(
                    request,
                    sampling_params,
                    result_generator,
                    context,
                    model_name,
                    tokenizer,
                    request_metadata,
                )
            except Exception as e:
                return self.create_error_response(str(e))
        return self.create_error_response("Should not reach here")
    async def _make_request(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse],
        tokenizer: AnyTokenizer,
    ):
        if len(request.tools) > 0:
            raise NotImplementedError(
                "Tool use is not supported in Responses API without Harmony")
        # Construct the input messages.
        messages = self._construct_input_messages(request, prev_response)
        _, request_prompts, engine_prompts = await self._preprocess_chat(
            request,
            tokenizer,
            messages,
            chat_template=self.chat_template,
            chat_template_content_format=self.chat_template_content_format,
        )
        return messages, request_prompts, engine_prompts
    def _make_request_with_harmony(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse],
    ):
        if request.tool_choice != "auto":
            raise NotImplementedError(
                "Only 'auto' tool_choice is supported in "
                "response API with Harmony")
        messages = self._construct_input_messages_with_harmony(
            request, prev_response)
        prompt_token_ids = render_for_completion(messages)
        engine_prompt = EngineTokensPrompt(prompt_token_ids=prompt_token_ids)
        return messages, [prompt_token_ids], [engine_prompt]
    async def responses_full_generator(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[ConversationContext],
        context: ConversationContext,
        model_name: str,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
        created_time: Optional[int] = None,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if created_time is None:
            created_time = int(time.time())
        try:
            async for _ in result_generator:
                pass
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))
        if self.use_harmony:
            assert isinstance(context, HarmonyContext)
            output = self._make_response_output_items_with_harmony(context)
            # TODO: these are all 0 for now!
            num_prompt_tokens = context.num_prompt_tokens
            num_generated_tokens = context.num_output_tokens
            num_cached_tokens = context.num_cached_tokens
            num_reasoning_tokens = context.num_reasoning_tokens
        else:
            assert isinstance(context, SimpleContext)
            final_res = context.last_output
            assert final_res is not None
            assert len(final_res.outputs) == 1
            final_output = final_res.outputs[0]
            output = self._make_response_output_items(request, final_output,
                                                      tokenizer)
            # Calculate usage.
            assert final_res.prompt_token_ids is not None
            num_prompt_tokens = len(final_res.prompt_token_ids)
            num_generated_tokens = len(final_output.token_ids)
            num_cached_tokens = final_res.num_cached_tokens
            num_reasoning_tokens = 0
        usage = ResponseUsage(
            input_tokens=num_prompt_tokens,
            output_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
            input_tokens_details=InputTokensDetails(
                cached_tokens=num_cached_tokens),
            output_tokens_details=OutputTokensDetails(
                reasoning_tokens=num_reasoning_tokens),
        )
        response = ResponsesResponse.from_request(
            request,
            sampling_params,
            model_name=model_name,
            created_time=created_time,
            output=output,
            status="completed",
            usage=usage,
        )
        if request.store:
            async with self.response_store_lock:
                stored_response = self.response_store.get(response.id)
                # If the response is already cancelled, don't update it.
                if (stored_response is None
                        or stored_response.status != "cancelled"):
                    self.response_store[response.id] = response
        return response
    def _make_response_output_items(
        self,
        request: ResponsesRequest,
        final_output: CompletionOutput,
        tokenizer: AnyTokenizer,
    ) -> list[ResponseOutputItem]:
        if self.reasoning_parser:
            try:
                reasoning_parser = self.reasoning_parser(tokenizer)
            except RuntimeError as e:
                logger.exception("Error in reasoning parser creation.")
                raise e
            reasoning_content, content = (
                reasoning_parser.extract_reasoning_content(final_output.text,
                                                           request=request))
        else:
            reasoning_content = None
            content = final_output.text
        # Log complete response if output logging is enabled
        if self.enable_log_outputs and self.request_logger:
            output_text = ""
            if content:
                output_text = content
            elif reasoning_content:
                output_text = f"[reasoning: {reasoning_content}]"
            if output_text:
                self.request_logger.log_outputs(
                    request_id=request.request_id,
                    outputs=output_text,
                    output_token_ids=final_output.token_ids,
                    finish_reason=final_output.finish_reason,
                    is_streaming=False,
                    delta=False,
                )
        output = []
        if reasoning_content:
            reasoning_item = ResponseReasoningItem(
                id=f"rs_{random_uuid()}",
                summary=[],
                type="reasoning",
                content=[
                    ResponseReasoningTextContent(text=reasoning_content,
                                                 type="reasoning_text")
                ],
                status=None,  # NOTE: Only the last output item has status.
            )
            output.append(reasoning_item)
        if content:
            output_text = ResponseOutputText(
                text=content,
                annotations=[],  # TODO
                type="output_text",
                logprobs=None,  # TODO
            )
            message = ResponseOutputMessage(
                id=f"msg_{random_uuid()}",
                content=[output_text],
                role="assistant",
                status="completed",
                type="message",
            )
            output.append(message)
        return output
    def _make_response_output_items_with_harmony(
        self,
        context: HarmonyContext,
    ) -> list[ResponseOutputItem]:
        output_items = []
        num_init_messages = context.num_init_messages
        for msg in context.messages[num_init_messages:]:
            output_items.extend(parse_output_message(msg))
        # Handle the generation stopped in the middle (if any).
        last_items = parse_remaining_state(context.parser)
        if last_items:
            output_items.extend(last_items)
        return output_items
    def _construct_input_messages(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse] = None,
    ) -> list[ChatCompletionMessageParam]:
        messages: list[ChatCompletionMessageParam] = []
        if request.instructions:
            messages.append({
                "role": "system",
                "content": request.instructions,
            })
        # Prepend the conversation history.
        if prev_response is not None:
            # Add the previous messages.
            prev_msg = self.msg_store[prev_response.id]
            messages.extend(prev_msg)
            # Add the previous output.
            for output_item in prev_response.output:
                # NOTE: We skip the reasoning output.
                if isinstance(output_item, ResponseOutputMessage):
                    for content in output_item.content:
                        messages.append({
                            "role": "assistant",
                            "content": content.text,
                        })
        # Append the new input.
        # Responses API supports simple text inputs without chat format.
        if isinstance(request.input, str):
            messages.append({"role": "user", "content": request.input})
        else:
            messages.extend(request.input)  # type: ignore
        return messages
    def _construct_input_messages_with_harmony(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse],
    ) -> list[OpenAIHarmonyMessage]:
        messages: list[OpenAIHarmonyMessage] = []
        if prev_response is None:
            # New conversation.
            reasoning_effort = (request.reasoning.effort
                                if request.reasoning else None)
            tool_types = [tool.type for tool in request.tools]
            enable_browser = ("web_search_preview" in tool_types
                              and self.tool_server is not None
                              and self.tool_server.has_tool("browser"))
            enable_code_interpreter = ("code_interpreter" in tool_types
                                       and self.tool_server is not None
                                       and self.tool_server.has_tool("python"))
            sys_msg = get_system_message(
                reasoning_effort=reasoning_effort,
                browser_description=self.tool_server.get_tool_description(
                    "browser")
                if enable_browser and self.tool_server is not None else None,
                python_description=self.tool_server.get_tool_description(
                    "python") if enable_code_interpreter
                and self.tool_server is not None else None,
            )
            messages.append(sys_msg)
            dev_msg = get_developer_message(request.instructions,
                                            request.tools)
            messages.append(dev_msg)
        else:
            # Continue the previous conversation.
            # FIXME(woosuk): Currently, request params like reasoning and
            # instructions are ignored.
            prev_msgs = self.msg_store[prev_response.id]
            # Remove the previous chain-of-thoughts if there is a new "final"
            # message. Note that this also removes these messages from the
            # msg_store.
            if len(prev_msgs) > 0:
                last_msg = prev_msgs[-1]
                assert isinstance(last_msg, OpenAIHarmonyMessage)
                if last_msg.channel == "final":
                    prev_final_msg_idx = -1
                    for i in range(len(prev_msgs) - 2, -1, -1):
                        prev_msg_i = prev_msgs[i]
                        assert isinstance(prev_msg_i, OpenAIHarmonyMessage)
                        if prev_msg_i.channel == "final":
                            prev_final_msg_idx = i
                            break
                    recent_turn_msgs = prev_msgs[prev_final_msg_idx + 1:]
                    del prev_msgs[prev_final_msg_idx + 1:]
                    for msg in recent_turn_msgs:
                        assert isinstance(msg, OpenAIHarmonyMessage)
                        if msg.channel != "analysis":
                            prev_msgs.append(msg)
            messages.extend(prev_msgs)
        # Append the new input.
        # Reponses API supports simple text inputs without chat format.
        if isinstance(request.input, str):
            messages.append(get_user_message(request.input))
        else:
            if prev_response is not None:
                prev_outputs = copy(prev_response.output)
            else:
                prev_outputs = []
            for response_msg in request.input:
                messages.append(
                    parse_response_input(response_msg, prev_outputs))
                # User passes in a a tool call request and its output. We need
                # to add the tool call request to prev_outputs so that the
                # parse_response_input can find the tool call request when
                # parsing the tool call output.
                if isinstance(response_msg, ResponseFunctionToolCall):
                    prev_outputs.append(response_msg)
        return messages
    async def _run_background_request(
        self,
        request: ResponsesRequest,
        *args,
        **kwargs,
    ):
        try:
            response = await self.responses_full_generator(
                request, *args, **kwargs)
        except Exception as e:
            logger.exception("Background request failed for %s",
                             request.request_id)
            response = self.create_error_response(str(e))
        if isinstance(response, ErrorResponse):
            # If the request has failed, update the status to "failed".
            response_id = request.request_id
            async with self.response_store_lock:
                stored_response = self.response_store.get(response_id)
                assert stored_response is not None
                if stored_response.status not in ("completed", "cancelled"):
                    stored_response.status = "failed"
    async def retrieve_responses(
        self,
        response_id: str,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if not response_id.startswith("resp_"):
            return self._make_invalid_id_error(response_id)
        async with self.response_store_lock:
            response = self.response_store.get(response_id)
        if response is None:
            return self._make_not_found_error(response_id)
        return response
    async def cancel_responses(
        self,
        response_id: str,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if not response_id.startswith("resp_"):
            return self._make_invalid_id_error(response_id)
        async with self.response_store_lock:
            response = self.response_store.get(response_id)
            if response is None:
                return self._make_not_found_error(response_id)
            prev_status = response.status
            if prev_status not in ("queued", "in_progress"):
                return self.create_error_response(
                    err_type="invalid_request_error",
                    message="Cannot cancel a synchronous response.",
                )
            # Update the status to "cancelled".
            response.status = "cancelled"
        # Abort the request.
        if (task := self.background_tasks.get(response_id)):
            task.cancel()
            try:
                await task
            except asyncio.CancelledError:
                logger.exception("Background task for %s was cancelled",
                                 response_id)
        return response
    def _make_invalid_id_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=(f"Invalid 'response_id': '{response_id}'. "
                     "Expected an ID that begins with 'resp'."),
        )
    def _make_not_found_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=f"Response with id '{response_id}' not found.",
            status_code=HTTPStatus.NOT_FOUND,
        )
    def _make_store_not_supported_error(self) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=("`store=True` (default) is not supported. Please set "
                     "`store=False` in Responses API or set "
                     "`VLLM_ENABLE_RESPONSES_API_STORE=1` in the env var when "
                     "starting the vLLM server."),
            status_code=HTTPStatus.BAD_REQUEST,
        )