vllm.model_executor.layers.pooler
 module-attribute  ¶
 PoolingFn = Callable[
    [Union[Tensor, list[Tensor]], PoolingMetadata],
    Union[Tensor, list[Tensor]],
]
 
  Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
  
    
  Source code in vllm/model_executor/layers/pooler.py
   
 get_supported_tasks() -> Set[PoolingTask]
 
 Source code in vllm/model_executor/layers/pooler.py
  abstractmethod  ¶
  Source code in vllm/model_executor/layers/pooler.py
   
  Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
  
  Source code in vllm/model_executor/layers/pooler.py
  
  Source code in vllm/model_executor/layers/pooler.py
   
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: Pooler
A pooling layer for classification tasks.
This layer does the following: 1. Applies a classification layer to the hidden states. 2. Optionally applies a pooler layer. 3. Applies an activation function to the output.
Source code in vllm/model_executor/layers/pooler.py
  
 __init__(
    pooling: PoolingFn,
    classifier: Optional[ClassifierFn],
    act_fn: Optional[PoolerActivation] = None,
) -> None
Source code in vllm/model_executor/layers/pooler.py
   staticmethod  ¶
 act_fn_for_cross_encoder(config: ModelConfig)
 staticmethod  ¶
 act_fn_for_seq_cls(config: ModelConfig)
 
 forward(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
  
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: Pooler
Dispatches calls to a sub-pooler based on the pooling task.
Source code in vllm/model_executor/layers/pooler.py
  
 __init__(
    poolers_by_task: Mapping[PoolingTask, Pooler],
) -> None
Source code in vllm/model_executor/layers/pooler.py
  
 forward(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
  
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
 
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: PoolerHead
Source code in vllm/model_executor/layers/pooler.py
  
    
 forward(
    pooled_data: Union[list[Tensor], Tensor],
    pooling_metadata: PoolingMetadata,
)
Source code in vllm/model_executor/layers/pooler.py
  
   
  Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
  
  Source code in vllm/model_executor/layers/pooler.py
   
    
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
  
  Source code in vllm/model_executor/layers/pooler.py
  
  Source code in vllm/model_executor/layers/pooler.py
  
 get_supported_tasks() -> Set[PoolingTask]
 
 The interface required for all poolers used in pooling models in vLLM.
Source code in vllm/model_executor/layers/pooler.py
  staticmethod  ¶
 for_classify(
    pooler_config: PoolerConfig,
    classifier: Optional[ClassifierFn],
)
Source code in vllm/model_executor/layers/pooler.py
  staticmethod  ¶
 for_embed(pooler_config: PoolerConfig)
 staticmethod  ¶
 for_encode(pooler_config: PoolerConfig)
Source code in vllm/model_executor/layers/pooler.py
   abstractmethod  ¶
 forward(
    hidden_states: Union[list[Tensor], Tensor],
    pooling_metadata: PoolingMetadata,
) -> PoolerOutput
 
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
Construct the updated pooling parameters to use for a supported task.
 abstractmethod  ¶
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: BasePoolerActivation
Source code in vllm/model_executor/layers/pooler.py
  
  Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
  
  Source code in vllm/model_executor/layers/pooler.py
   
  Bases: Module
Source code in vllm/model_executor/layers/pooler.py
  
 __init__(activation: PoolerActivation) -> None
 
  Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
   
  Bases: PoolerActivation
Source code in vllm/model_executor/layers/pooler.py
   
   
 Source code in vllm/model_executor/layers/pooler.py
  
 forward(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> Union[list[Tensor], Tensor]
Source code in vllm/model_executor/layers/pooler.py
  abstractmethod  ¶
    abstractmethod  ¶
  Note
prompt_len=None means prompt_len=len(hidden_states).
Source code in vllm/model_executor/layers/pooler.py
   staticmethod  ¶
 from_pooling_type(
    pooling_type: PoolingType,
) -> PoolingMethod
Source code in vllm/model_executor/layers/pooler.py
  
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
 dataclass  ¶
 Source code in vllm/model_executor/layers/pooler.py
   class-attribute instance-attribute  ¶
 requires_token_ids: bool = False
Set this flag to enable get_prompt_token_ids for your pooler.
 
 apply(params: PoolingParams) -> None
 
  Bases: IntEnum
Enumeration for different types of pooling methods.
Source code in vllm/model_executor/layers/pooler.py
   dataclass  ¶
 Source code in vllm/model_executor/layers/pooler.py
  classmethod  ¶
 from_config(
    task: PoolingTask, pooler_config: PoolerConfig
) -> ResolvedPoolingConfig
Source code in vllm/model_executor/layers/pooler.py
   
  Bases: PoolerHead
Source code in vllm/model_executor/layers/pooler.py
  
    
 forward(
    pooled_data: Union[list[Tensor], Tensor],
    pooling_metadata: PoolingMetadata,
)
Source code in vllm/model_executor/layers/pooler.py
  
  Bases: Pooler
A layer that pools specific information from hidden states.
This layer does the following: 1. Extracts specific tokens or aggregates data based on pooling method. 2. Normalizes output if specified. 3. Returns structured results as PoolerOutput.
Source code in vllm/model_executor/layers/pooler.py
  
 __init__(pooling: PoolingMethod, head: PoolerHead) -> None
 
 forward(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
  classmethod  ¶
 from_config(
    pooler_config: ResolvedPoolingConfig,
) -> SimplePooler
Source code in vllm/model_executor/layers/pooler.py
  
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
 
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: Pooler
Source code in vllm/model_executor/layers/pooler.py
  
    
 extract_states(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> Union[list[Tensor], Tensor]
Source code in vllm/model_executor/layers/pooler.py
  
 forward(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> PoolerOutput
Source code in vllm/model_executor/layers/pooler.py
  
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
 
 get_supported_tasks() -> Set[PoolingTask]
 
    
  Source code in vllm/model_executor/layers/pooler.py
  
 get_pooling_params(
    pooling_metadata: PoolingMetadata,
) -> list[PoolingParams]
Source code in vllm/model_executor/layers/pooler.py
   
 get_prompt_lens(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> Tensor
Source code in vllm/model_executor/layers/pooler.py
  
 get_prompt_token_ids(
    pooling_metadata: PoolingMetadata,
) -> list[Tensor]
Source code in vllm/model_executor/layers/pooler.py
  
 get_tasks(
    pooling_metadata: PoolingMetadata,
) -> list[PoolingTask]