vllm.model_executor.models.jina_vl
 
  Bases: Qwen2VLForConditionalGeneration, SupportsCrossEncoding, SupportsMultiModal, SupportsScoreTemplate
Source code in vllm/model_executor/models/jina_vl.py
  instance-attribute  ¶
 pooler = DispatchPooler(
    {
        "encode": for_encode(pooler_config),
        "classify": for_classify(
            pooler_config, classifier=None
        ),
        "score": for_classify(
            pooler_config, classifier=None
        ),
    }
)
 class-attribute instance-attribute  ¶
 weight_mapper = WeightsMapper(
    orig_to_new_prefix={
        "score.0.": "score.dense.",
        "score.2.": "score.out_proj.",
        "model.language_model.": "language_model.model.",
        "visual.": "visual.",
        "lm_head.": "language_model.lm_head.",
        "model.": "language_model.model.",
    }
)
 
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/jina_vl.py
  
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
    **kwargs: object,
) -> Tensor
Source code in vllm/model_executor/models/jina_vl.py
  classmethod  ¶
    classmethod  ¶
    
    classmethod  ¶
 post_process_tokens(prompt: TokensPrompt) -> None
 
  Bases: Qwen2VLMultiModalProcessor
Source code in vllm/model_executor/models/jina_vl.py
  
 _call_hf_processor(
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
    tok_kwargs: Mapping[str, object],
) -> BatchFeature
Source code in vllm/model_executor/models/jina_vl.py
  
  Bases: Module