vllm.model_executor.models.modernbert
 
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 Wqkv = QKVParallelLinear(
    hidden_size, head_dim, num_heads, bias=attention_bias
)
 instance-attribute  ¶
 attn = Attention(
    num_heads,
    head_dim,
    scaling,
    prefix=f"{layer_id}.attn",
    attn_type=ENCODER_ONLY,
)
 instance-attribute  ¶
   instance-attribute  ¶
 rotary_emb = ModernBertRotaryEmbedding(
    config=config,
    head_size=head_dim,
    dim=head_dim,
    base=rope_theta,
)
 
  Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 tok_embeddings = VocabParallelEmbedding(
    vocab_size, hidden_size
)
 
  Source code in vllm/model_executor/models/modernbert.py
   
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 layers = ModuleList(
    [
        (ModernBertLayer(config=config, layer_id=layer_id))
        for layer_id in (range(num_hidden_layers))
    ]
)
 
 __init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
   
    
  Bases: Module, SupportsV0Only, SupportsCrossEncoding
Source code in vllm/model_executor/models/modernbert.py
  instance-attribute  ¶
 model = ModernBertModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "modernbert"),
)
 instance-attribute  ¶
 pooler = DispatchPooler(
    {
        "encode": for_encode(pooler_config),
        "classify": ClassifierPooler(
            pooling=ModernBertPooler(config),
            classifier=classifier,
            act_fn=act_fn_for_seq_cls(model_config),
        ),
        "score": ClassifierPooler(
            pooling=ModernBertPooler(config),
            classifier=classifier,
            act_fn=act_fn_for_cross_encoder(model_config),
        ),
    }
)
 
 __init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    input_ids: Optional[LongTensor],
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Module
Source code in vllm/model_executor/models/modernbert.py
  class-attribute instance-attribute  ¶
 hf_to_vllm_mapper = WeightsMapper(
    orig_to_new_prefix={"layers.": "encoder_layer.layers."}
)
 
 __init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: Optional[
        IntermediateTensors
    ] = None,
    inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
  Bases: Pooler
Source code in vllm/model_executor/models/modernbert.py
  
  Source code in vllm/model_executor/models/modernbert.py
  
 forward(
    hidden_states: Union[Tensor, list[Tensor]],
    pooling_metadata: PoolingMetadata,
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/modernbert.py
  
 get_pooling_updates(
    task: PoolingTask,
) -> PoolingParamsUpdate
 
 get_supported_tasks() -> Set[PoolingTask]
 
  Bases: RotaryEmbedding