class Sampler(nn.Module):
    def __init__(self, logprobs_mode: LogprobsMode = "raw_logprobs"):
        super().__init__()
        self.topk_topp_sampler = TopKTopPSampler()
        self.pin_memory = is_pin_memory_available()
        self.logprobs_mode = logprobs_mode
    def forward(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> SamplerOutput:
        # NOTE(woosuk): Use the original logits (before any penalties or
        # temperature scaling) for the top-k logprobs.
        # This is different from the V0 sampler, which uses the logits that
        # is used for sampling (after penalties and temperature scaling).
        # TODO(rob): provide option for logprobs post sampling.
        # See https://vllm-dev.slack.com/archives/C07UUL8E61Z/p1735907856007919 # noqa: E501
        num_logprobs = sampling_metadata.max_num_logprobs
        if num_logprobs is not None:
            if self.logprobs_mode == "raw_logprobs":
                raw_logprobs = self.compute_logprobs(logits)
            elif self.logprobs_mode == "raw_logits":
                raw_logprobs = logits.clone()
        # Use float32 for the logits.
        logits = logits.to(torch.float32)
        # Apply allowed token ids.
        logits = self.apply_allowed_token_ids(logits, sampling_metadata)
        # Apply bad words exclusion.
        logits = self.apply_bad_words(logits, sampling_metadata)
        # Apply logits processors which can impact greedy sampling
        for processor in (sampling_metadata.logitsprocs.non_argmax_invariant):
            logits = processor.apply(logits)
        # Apply penalties (e.g., min_tokens, freq_penalties).
        logits = self.apply_penalties(logits, sampling_metadata)
        # Get the process logprobs or logits.
        if num_logprobs is not None:
            if self.logprobs_mode == "processed_logprobs":
                raw_logprobs = self.compute_logprobs(logits)
            elif self.logprobs_mode == "processed_logits":
                raw_logprobs = logits.clone()
        # Sample the next token.
        sampled = self.sample(logits, sampling_metadata)
        # Convert sampled token ids to int64 (long) type to ensure compatibility
        # with subsequent operations that may use these values as indices.
        # This conversion is necessary because FlashInfer sampling operations
        # return int32 (while PyTorch argmax and topk return int64).
        sampled = sampled.long()
        # Gather the logprobs of the topk and sampled token (if requested).
        # Get logprobs and rank tensors (if requested)
        logprobs_tensors = None if num_logprobs is None else \
            self.gather_logprobs(raw_logprobs, num_logprobs, token_ids=sampled)
        # Use int32 to reduce the tensor size.
        sampled = sampled.to(torch.int32)
        # These are GPU tensors.
        sampler_output = SamplerOutput(
            # The sampled tokens are expanded to 2D tensor with shape
            # [num_requests, 1], where each row represents one generated
            # token per request.
            sampled_token_ids=sampled.unsqueeze(-1),
            logprobs_tensors=logprobs_tensors,
        )
        return sampler_output
    def apply_temperature(
        self,
        logits: torch.Tensor,
        temp: torch.Tensor,
    ) -> torch.Tensor:
        # Use in-place division to avoid creating a new tensor.
        return logits.div_(temp.unsqueeze(dim=1))
    def greedy_sample(self, logits: torch.Tensor) -> torch.Tensor:
        return logits.argmax(dim=-1).view(-1)
    def sample(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        """Sample logits based on sampling metadata.
        The various logits processing functions called in this method
        may update the logits tensor in-place.
        """
        assert not (sampling_metadata.all_greedy
                    and sampling_metadata.all_random)
        if sampling_metadata.all_random:
            greedy_sampled = None
        else:
            greedy_sampled = self.greedy_sample(logits)
            if sampling_metadata.all_greedy:
                return greedy_sampled
        assert sampling_metadata.temperature is not None
        # Apply temperature.
        logits = self.apply_temperature(logits, sampling_metadata.temperature)
        # Apply logits processors that only apply to random sampling
        # (argmax invariant)
        for processor in sampling_metadata.logitsprocs.argmax_invariant:
            logits = processor.apply(logits)
        # Apply top_k and/or top_p.
        random_sampled = self.topk_topp_sampler(
            logits,
            sampling_metadata.generators,
            sampling_metadata.top_k,
            sampling_metadata.top_p,
        )
        if greedy_sampled is None:
            return random_sampled
        sampled = torch.where(
            sampling_metadata.temperature < _SAMPLING_EPS,
            greedy_sampled,
            random_sampled,
            out=greedy_sampled,  # Reuse tensor
        )
        return sampled
    def compute_logprobs(self, logits: torch.Tensor) -> torch.Tensor:
        return logits.log_softmax(dim=-1, dtype=torch.float32)
    def gather_logprobs(
        self,
        logprobs: torch.Tensor,
        num_logprobs: int,
        token_ids: torch.Tensor,
    ) -> LogprobsTensors:
        """
        Gather logprobs for topk and sampled/prompt token.
        Args:
          logprobs: (num tokens) x (vocab) tensor
          num_logprobs: minimum number of logprobs to
                        retain per token
          token_ids: prompt tokens (if prompt logprobs)
                     or sampled tokens (if sampled
                     logprobs); 1D token ID tensor
                     with (num tokens) elements
                     Must be int64.
        Returns:
          Top-k int indices tensor, (num tokens) x (num_logprobs + 1)
          Top-k float logprobs tensor, (num tokens) x (num_logprobs + 1)
          Sampled token rank tensor, (num tokens)
        """
        assert token_ids.dtype == torch.int64
        # Find the topK values.
        topk_logprobs, topk_indices = torch.topk(logprobs,
                                                 num_logprobs,
                                                 dim=-1)
        # Get with the logprob of the prompt or sampled token.
        token_ids = token_ids.unsqueeze(-1)
        token_logprobs = logprobs.gather(-1, token_ids)
        # Compute the ranks of the actual token.
        token_ranks = batched_count_greater_than(logprobs, token_logprobs)
        # Concatenate together with the topk.
        indices = torch.cat((token_ids, topk_indices), dim=1)
        logprobs = torch.cat((token_logprobs, topk_logprobs), dim=1)
        # Use int32 to reduce the tensor size.
        indices = indices.to(torch.int32)
        return LogprobsTensors(indices, logprobs, token_ranks)
    def apply_penalties(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        if not sampling_metadata.no_penalties:
            assert sampling_metadata.prompt_token_ids is not None
            logits = apply_all_penalties(
                logits,
                sampling_metadata.prompt_token_ids,
                sampling_metadata.presence_penalties,
                sampling_metadata.frequency_penalties,
                sampling_metadata.repetition_penalties,
                sampling_metadata.output_token_ids,
            )
        return logits
    def apply_allowed_token_ids(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        if sampling_metadata.allowed_token_ids_mask is not None:
            logits.masked_fill_(sampling_metadata.allowed_token_ids_mask,
                                float("-inf"))
        return logits
    def apply_bad_words(
        self,
        logits: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> torch.Tensor:
        if sampling_metadata.bad_words_token_ids:
            apply_bad_words(
                logits,
                sampling_metadata.bad_words_token_ids,
                sampling_metadata.output_token_ids,
            )
        return logits