vllm.v1.sample.tpu.metadata
 module-attribute  ¶
 DEFAULT_SAMPLING_PARAMS = dict(
    temperature=-1.0, min_p=0.0, top_k=0, top_p=1.0
)
 dataclass  ¶
 Source code in vllm/v1/sample/tpu/metadata.py
 | 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |  | 
 class-attribute instance-attribute  ¶
   class-attribute instance-attribute  ¶
   class-attribute instance-attribute  ¶
   
 __init__(
    temperature: Tensor = None,
    min_p: Tensor = None,
    top_k: Tensor = None,
    top_p: Tensor = None,
    all_greedy: bool = True,
    logprobs: bool = False,
    no_penalties: bool = True,
    output_token_ids: list[list[int]] = (lambda: list())(),
    logit_bias: list[Optional[dict[int, float]]] = (
        lambda: list()
    )(),
    _generators: dict[int, Generator] = (lambda: dict())(),
) -> None
 classmethod  ¶
 from_input_batch(
    input_batch: InputBatch,
    padded_num_reqs: int,
    xla_device: device,
    generate_params_if_all_greedy: bool = False,
) -> TPUSupportedSamplingMetadata
Copy sampling tensors slices from input_batch to on device tensors.
InputBatch._make_sampling_metadata causes recompilation on XLA as it slices dynamic shapes on device tensors. This impl moves the dynamic ops to CPU and produces tensors of fixed padded_num_reqs size.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| input_batch | InputBatch | The input batch containing sampling parameters. | required | 
| padded_num_reqs | int | The padded number of requests. | required | 
| xla_device | device | The XLA device. | required | 
| generate_params_if_all_greedy | bool | If True, generate sampling parameters even if all requests are greedy. this is useful for cases where we want to pre-compile a graph with sampling parameters, even if they are not strictly needed for greedy decoding. | False |